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OPTIMIZED SOLUTION OF KEPLER’S EQUATION 

by 
John M. Kohout and Lamar Layton 

Goddard Space Flight Center 

1.0 INTRODUCTION 

1.1 General Description of KEPLER 

KEPLER is an IBM 360 computer program used to  solve Kepler’s equation for eccentric anomaly: 

E = M + e  sin E .  

The double precision input to  the program consists of mean anomaly M (in radians) and eccentric- 
ity of the orbit e. The double precision output from program consists of eccentric anomaly E (in 
radians), sin E ,  and cos E .  

1.2 KEPLER and KEPLRl 

KEPLER has been developed by the authors as a replacement for KEPLRl , a similar program con- 
tained in the definitive orbit determination system (DODS) used at Goddard Space Flight Center to 
determine orbits for NASA’s scientific satellites. KEPLRl was not a hastily coded and formulated 
program designed for early replacement as soon as DODS became operational. On the contrary, 
KEPLR 1 was developed after a rather extensive research effort that recommended a particular algo- 
rithm, the Myles Standish algorithm.* This algorithm was then implemented by Federal Systems 
Division of IBM under contract to GSFC (see Appendix A). KEPLRl has been in productive use since 
May 1968. 

KEPLER was developed as a part of an effort to  optimize the execution times of frequently 
called subprograms in DODS. The initial thought was simply to  recode KEPLRl in assembly language 
coding (ALC), since, like most other programs in DODS, KEPLRl was coded in FORTRAN, and 
previous experience with other programs in DODS led the authors to  anticipate a 20 to 30 percent 
speed improvement from a FORTRAN-to-ALC recoding. However, a little analysis of the formulation 
used in KEPLRl led the authors to  believe that a new analytic approach to  the age-old problem was 

*Cole, Isabella, and Borchers, Raymond V., “A Comparison of Some Iterative Techniques for the Solution of Kepler’s Equation”, 
NASA/GSFC Document X-552-67-421, September 1967. 



in order. As a result, they engaged in a research effort of their own* and developed a completely new 
computer program, KEPLER. 

KEPLER not only solves Kepler’s equation for eccentric anomaly but also outputs accurate values 
for the sine and cosine of the eccentric anomaly. This is important since in almost every case for which 
DODS calls on KEPLRl to solve Kepler’s equation for E, it then uses E as the input argument to the 
DSIN(X) and DCOS(X) functions. These function calls are unnecessary when KEPLER is used since 
sin E and cos E are part of its output. 

1.3 Outline of Remainder of This Document 

Section 2 of this document is a description of the relative performance of KEPLER versus that of 
KEPLRl. Section 3 is a detailed design and performance description of the newly developed program, 
KEPLER. Section 4 presents the mathematical derivation of the principal formulas used in KEPLER, 
namely the second-order Newton-Raphson differential correction of eccentric anomaly. Section 5 
summarizes the significance of the use of KEPLER and its called module in DODS, DPSC (double 
precision sine/cosine), and recommends the development of related programs. 

Appendix A is a module performance and design description of KEPLRl prepared for GSFC by 
IBM. Appendixes B and C list the test programs used to compare KEPLER with KEPLRl . Appendix 
D lists KEPLRl (in FORTRAN) and KEPLER and its called program, DPSC (in ALC). 

2.0 A COMPARISON OF KEPLER AND KEPLRl 

This section deals with accuracy, speed, core storage requirement, and reentrant properties of the 
KEPLER program. The DODS module KEPLRl is used as a benchmark for comparison. 

2.1 Accuracy of KEPLER 

Appendix B lists a test program, TEST 1 , which is used to exercise both KEPLRl and KEPLER 
over a full range of the input arguments, M and e. The maximum error produced by each program 
over full ranges of the arguments is obtained by substitution of the solution for eccentric anomaly 
back into Kepler’s equation: 

KEPLRl error = ( E  - (M + e sin E)\  = 0.50 X 

KEPLER error = \E  - (M + e sin E)(  = 0.44 X . 

2.2 Execution Times 

Appendix C lists a test program, TEST 2, which times the execution of KEPLER and KEPLRl 
on GSFC’s IBM 360/95 computer. Full ranges of e and M are used in this test. The average execution 

*Kohout, J., and Layton, L., “GSFC Optimized Solution of Kepler’s Equation”, NASA/GSFC Document X-541-71-229, May 1971. 
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times reported are based on 400 000 test cases: 

Average KEPLRl execution time = 314 ps* 

Average KEPLER execution time = 74 ps . 

2.3 Core Requirements 

KEPLR 1 requires 820 bytes of core for itself and 620 bytes of core for its called module, 
IHCLSCN, the standard, release 1 9 FORTRAN library (FORTLIB) double precision sine/cosine rou- 
tine. KEPLER requires 440 bytes of core for itself and 2360 bytes of core for its called module, 
DPSC. 

2.4 Reentrancy of KEPLER 

Both KEPLER and its called module, DPSC, are reentrant and, therefore, are candidates for the 
high-speed system link pack area. Neither KEPLRl nor its called module are reentrant. Therefore, 
they may not be stored in the high-speed system link pack area. 

2.5 Optimal Execution Times for KEPLER 

The favorable ratio of execution times reported in Section 2.2 (KEPLRl/KEPLER = 314/74 = 
4.24) will be enhanced by factors of 2, 3, and 4, on the IBM 360/95, 360/75, and 360/65, respectively, 
when KEPLER and DPSC are located in the high-speed system link pack area and KEPLRl and its 
called module are located in low-speed core. Under these optimal conditions, the execution time ratios 
would be 8.48, 12.72, and 16.96, respectively. 

Furthermore, when KEPLER and DPSC are located in the system link pack area, several concur- 
rent jobs could be calling on KEPLER, and only one copy of KEPLER would be in core. (The core 
storage requirement of KEPLER would be charged to  system overhead and not to  a particular job.) 

3.0 KEPLER-MODULE PERFORMANCE A N D  DESIGN DESCRIPTION 

3.1 Language 

KEPLER is written in ALC in order to  reduce both execution time and core storage. The core 
storage savings are incidental; the main reason for the use of ALC is to  produce a faster executing 
program. It is estimated that the use of ALC for KEPLER is responsible for about one-third of the 
improvement in execution time when that program is used in place of KEPLRl. 

3.2 Module Size 

KEPLER requires 440 bytes of core storage. 

*This figure includes the time required to calculate sin E and cos E. Without these calculations, the average execution time for 
KEPLRl is 266 ps. 
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3.3 Purpose of KEPLER 

KEPLER solves Kepler’s equation for eccentric anomaly when mean anomaly and eccentricity 
are known. The sine and cosine of eccentric anomaly are output by this module. 

3.4 Linkage Information 

3.4.1 Calling Sequence 

KEPLER is invoked via the following call statement: 

CALL KEPLER(MA, ECC, IERR, OUT),  

where 

MA (input) 
ECC (input) = e, eccentricity; 
IERR (output) = error code 

= M ,  mean anomaly (in radians); 

= 0, if no error 
= 1, if e is negative or greater than 0.99; 

OUT (output) = 3 word matrix 
OUT(1) = E ,  eccentric anomaly 
OUT(2) =sin E 
OUT(3) = cos E. 

The qualities M ,  e, E, sin E, and cos E are double precision floating point numbers. The error code, 
IERR, is a full word integer. 

3.4.2 Called Modules 

KEPLER calls on the reentrant DPSC module. It uses the ALC entry point, SINCOS, which in- 
puts x in FRO and outputs sin x in FRO and cos x in FR2. (Note: FRO is floating point register 0 and 
FR2 is floating point register 2.) 

3.4.3 Calling Modules 

The following modules in DODS call on KEPLER: 

NEGENO, 
EPTRBO, 
ELCONO, 

DCCONO, 
CNVRTO, 
UNCALO. 

3.5 Functional Analysis 

3.5.1 Module Component 1, Main Program 

4 
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3.5.1.1 Method 

Kepler's equation, E = M + e sin E, is solved for E by use of a second-order Newton-Raphson 
iterative algorithm. The derivation of this algorithm is discussed in Section 4 of this document. The 
iterative algorithm is enhanced by four features of KEPLER: 

(1) The mean anomaly M is reduced to a value between -n and +n, and the resultant sign is 
saved. Then, the absolute value of M is used to solve Kepler's equation. After a solution is obtained, 
E is set equal to 2n - E if the reduced value of M is negative. 

(2) A highly efficient initial estimate algorithm is used to  generate E', a starting value for the 
iterative process. This algorithm is discussed in Section 3.5.2. 

(3) The SINCOS entry in the DPSC module is used to calculate simultaneously sin E' and cos E'. 

(4) Sum formulas are used to calculate sin (E' + C )  and cos (E' + C )  whenever C becomes small 
enough that first- or second-order approximations of sin C and cos C are tolerable. 

3.5.1.2 Main Program Algorithm 

Step 1 :  

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Step 9: 

Step 10: 

Step 11 :  

Step 12: 

Step 13: 

Step 14: 

Step 15: 

Error exit if e is negative or greater than 0.99. 

Reduce M modulo 2n to range [-n, +TI. 
Save sign of M and set M = IM I .  
E' = ESTIMATE (M,  e ) .  

Calculate sin E' and cos E' via SINCOS routine. 

F = M + e sin E' - E'. 

D = 1 - e  cos E'. 

D' = D + 0.5Fe sin E'lD. 

C = FILII. 

E'' = E' + C; store as E' 

If I C [  > 
If  IC\< 

sin E" = sin (E' + C) = ( 1 - 0.5C2) sin E' + C COS E'; 
cos E" = cos (E' + C) = (1 - 0.SC2) cos E' - C sin E'. 
Replace sin E' with sin E", replace cos E' with cos E", 
and return to Step 5. 

sin E" = sin (E' + C )  = sin E' + C cos E';  
cos E" = cos (E' + C) = cos E' - C sin E'. 

If sign of reduced M is positive, skip to Step 16. 

Set sin E' = -sin E' and E' = 2n - E'. 

return to Step 4. 

skip to Step 13. 

1 

(See module component 2.) 

(linear correct ion) 

(first-order derivative) 

(second-order derivative) 

(second-order correction) 

(enhanced E' )  

(second-order sums formulas) 

(first-order sums formulas) 
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Step 16: Output E = E‘, sin E = sin E”, and cos E = cos E”, with E, sin E,  and cos E accurate to 15 
decimal places. 

Return to  calling program. Step 17: 

3.5.1.3 Explanation of Algorithm 

Step 1: 

Step 2: 

Step 3: 

Steps 4-9: 

Step 10: 

Step 11: 

Step 12: 

Step 13: 

If e is out of range, no output other than error code is generated. 

The reduction of M to the range [ -T, +TI and the saving of its sign have several advan- 
tages: (1) it increases the precision of the calculation of the linear correction in Step 5 
since M and E‘ will not exceed n; (2) it simplifies the estimation function (Step 3) since 
M is constrained to  the range [ 0, a] ; (3) it provides a convenient test for E being output 
in the range [0, 2n] (Steps 14-15). 

The estimation function is treated in detail in Section 3.5.2. The purpose of this function 
is to provide a sufficiently accurate initial estimate of eccentric anomaly to ensure (1) 
that the differential correction process defined in Steps 4-9 converges and (2) that this 
convergence takes place in a minimum number of iterations. 

This sequence of steps constitutes one second-order Newton-Raphson iteration. This 
algorithm is considerably more accurate than a first-order differential correction and its 
use has two basic advantages: (1) it converges in fewer iterations than the first-order 
correction and (2) the convergence tolerance E used to terminate the second-order dif- 
ferential correction process may be larger than that for the first-order correction because 
the correction is more accurate. (Other programs use a convergence tolerance of 
5 x but KEPLER is able to  maintain accuracy with a convergence tolerance of 
10-8 .) 

If the absolute value of the correction C, is greater than 1 0-5 , Steps 4-8 are repeated. 
That is, the lengthy SINCOS routine is reexecuted in Step 4 to  provide accurate values 
for sin (E’ + C) and cos (E‘ + C). 

If the absolute value of C is less than 1 0‘8 , sufficient convergence is obtained to  guaran- 
tee that E is accurate to 15 significant digits. Step 12 is skipped when this condition is 
met. 

When the absolute value of Cis  between 1 0-’ and 1 0-8 , the algorithm iterates, but the 
lengthy sine/cosine calculation (Step 4) is replaced by the second-order sum formulas in 
Step 12. The largest truncated term in these sum formulas is C3 /3!. This means that 
when C < l 0-5 , the sum formulas have a relative accuracy of 0.167 X 1 0-1 ’ , which is 
slightly more accurate than the original calculation of sin E’ and cos E’ in Step 4. 

When convergence takes place (C < 1 0-8 ), sin E’ and cos E’ are updated by the first-order 
sum formulas in Step 13. The largest truncated term in the first-order sum formula is 
C2 /2!. This means that when C < 1 0-8 , the sum formulas have a relative accuracy of 
0.5 X 1 0-l6 , which again is more accurate than the original calculation of sin E’ and 
cos E’. 
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Step 14: If M is positive after being reduced to the range [ -71, +n] , Step 15 is skipped 
(sin E > 0, E < K). 

If 0 > M > -71, sin E’ is set negative, and E’ is set equal to 2n -E’. 

The quantities E ,  sin E,  and cos E are sequentially output in a 3 word matrix. 

The program is concluded. 

Step 15: 

Step 16: 

Step 17: 

3.5.2 Module Component 2, Initial Estimate 

3.5.2.1 Method 

As stated in the preceding section, the main purpose of L e  initial estimate algorithm is to provide 
a starting value for the differential correction process defined in Steps 4-9 of the main program. There 
is an obvious tradeoff between time and accuracy in this initial estimate algorithm. As the initial esti- 
mate is made more accurate, the number of times Steps 4-9 of the main program must be executed is 
reduced. There are, however, constraints on this tradeoff. 

When E’ is as accurate as one part in 1 0 5 ,  the time-consuming sine/cosine calculation step in the 
main program will be executed only once. Therefore, it is desirable to generate E’ to this degree of 
accuracy for most combinations of the input parameters e and M .  However, it would be uneconomical 
to spend too much time trying to achieve a greater overall accuracy since, rcgardless of the accuracy 
achieved, the full sine/cbsine calculation must be executed at least once in order to further refine E’ 
and to generate the sin E and cos E output. 

The algorithm used by KEPLER for the initial estimate was selected only after a large number of 
alternative algorithms were tested and proven to  be less efficient.* The name abbreviated Newton- 
Raphson is given to this algorithm because it represents a first-order Newton-Raphson correction in 
truncated precision. It possesses two desirable properties: (1) it is executed in a minimal amount of 
time (37 p s  on the IBM 360/75) and (2) for most combinations of M and e ,  it achieves the desired 
accuracy of one part in 1 0 5 .  

3.5.2.2 Initial Estimate Algorithm (Abbreviated Newton-Raphson) 

The abbreviated Newton-Raphson algorithm consists of two steps. 

Step A: E = M + e z ,  O < M < n ,  

where z is a linear estimate of sin M: 

z = 0.75 M, M < wf2; 
z = 0.75 (71 - M), M > nI2. 

Step B: 

*Kohout, J., and Layton, L., “GSFC Optimized Solution of Kepler’s Equation”, NASA/GSFC Document X-541-71-229, May 197 1. 
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where sin I? and cos are calculated from the first two terms of the Maclaurin expansions: 

x3 
3! 

sin x = x  - - 

X2 
c o s x =  1 - - . 

2! 

Step B involves several substeps: 

(1) Setx=,!?andS= I (S = SWITCH). 

( 2 )  If x > n/2 ,  set x = n - x and S = 2. 

( 3 )  If x > n/4, set x = n/2  -x  and S = - S .  

(4) Calculate sin I? = x - x3 /6  and cos 

( 5 )  If S is negative, exchange sin E and cos I? and set S = -S. 

( 6 )  If S = 2,  set cos I? = -cos I?. 

= 1 - x2 /2 .  

M + e sin I? - I? 
1 - e  cosE  

( 7 )  E ’ = E +  

3.5.2.3 Relation of Component 2 to Main Program 

The initial estimate function (component 2 )  is linearly coded as Step 3 of the main program 
(component 1). Component 2 does not have a separate entry point in KEPLER. 

3.5.3 Flowcharts 

No flowcharts are provided for the main program or the initial estimation function since 
KEPLER’s source code and source code comments directly conform to the logic outlined in Sections 
3.5.1.2 and 3.5.2.2. 

3.6 Restrictions and Limitations 

If the input value of e is negative or greater than 0.99, no output other than error code is 
generated. 

3.7 Storage Tables External to KEPLER 

None. 

3.8 Input/Output Device Requirements 

None. 
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3.9 Error Conditions and Recovery 

Tl;e error code, IERR, is examined after execution. If IERR = 1, the input value of e is out of 
range, and hence no other output can be expected. 

3.10 Module design Technique 

KEPLER is reentrant and, therefore, may be loaded in the system link pack area. KEPLER is 
optimized for fast execution; it is several times faster than existing modules. 

3.1 1 Test Procedures and Results 

The speed and accuracy of KEPLER have been verified by the test programs given in Appen- 
dixes B and C .  The results of these tests are summarized in Sections 2.1 and 2.2. 

4.0 SECOND-ORDER NEWTON-RAPHSON METHOD 

Deutsch applies the Newton-Raphson method to  the problem of solving Kepler’s equation 
(Reference 1, pp. 24-25). He extends the procedure to include second-order effects, but the final 
equation in the development includes an error in sign, as will be noted later. 

If 

then, 

Let 

Then, 

f ( E )  = E  - M - e sin E ,  

f ’ ( E ) = l  - e c o s E .  

A E = E ,  - E , .  

-(Eo - M - e sin E,) 

1 - e  cos E ,  
AE = + 0 [(fW2 1 

To obtain an expression valid to  terms of order (AE)2 ,  Deutsch proceeds as follows: 

M = ( E ,  + AE)  - e sin (Eo + AE) 

= E,  + AE - e(sin E ,  cos AE + sin AE cos E , )  

then, 

e sin E ,  

2 
(AE)2  + ( I  - e c o s E , ) A E + ( E , - M - e s i n E , ) = O .  
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1 Let 

A =E, - M - e s i n E ,  , 

B = 1 -ecosE, ,  

e sin E, 

2 
c =’  

We have then 
A x 2 + B x + C = 0  

-B f J B 2  - 4AC 
2A 

X =  

Hence, 
2A 

-B + J B m  

2A 

AE= 

N 

-B f (B - 2AC/B) ‘ 

Following Deutsch, we adopt the minus sign as the appropriate choice in the denominator; 

E, - M - e s i n E ,  
~- AE= 

-(1 -ecosEo)+(1/2) (Eo -M-esinE,)esinE,( l  -ecosE,)-’ ’ 

M - E ,  +es inE ,  
AE= 

1 -ecosEo+(1/2) (M-E,  +es inE , )e s inE( l  -ecosE,)-l ’ 

M-E,  +es inE ,  
~~ AE= 

1 -e[cosE, -(1/2)(M-E0 +es inE, )s inE, ( l  - e c o ~ E , ) - ~ ]  

(The minus sign within the brackets in the denominator which precedes (1 /2) is incorrectly given as a 
plus sign in Reference 1 .) 

In general, for functionsf(E) for which the relevant derivatives exist, we obtain from a Taylor’s 
series expansion: 

where terms through (AE)2 have been included. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Effect of KEPLER on DODS Performance 

The use of KEPLER in DODS results in a relatively insignificant enhancement of that system 
because, prior to  the use of KEPLER, DODS was spending less than three percent of its time solving 
Kepler’s equation. Therefore, even if KEPLER were one hundred times faster than KEPLRl , the 
time saving would not be highly significant in DODS operation. 

5.2 Effect of the DPSC Module on KEPLER 

Of more significance to  DODS is the concurrent development of DPSC, with ALC entry points 
SINCOS, DSINX, and DCOSX and FORTRAN entry points, DPSC, DSIN, and DCOS. KEPLER uses 
only the SINCOS entry point. The use of this efficient subroutine to simultaneously calculate sin E’ 
and cos E’ accounts for about one-third of KEPLER’s enhancement of DODS. Use of ALC and the 
improved mathematical model account for the other two-thirds. 

5.3 Effect of DPSC on DODS 

The inclusion of the DSIN and DCOS entry points in the DPSC module will enhance DODS con- 
siderably more than the inclusion of KEPLER alone. Every sine and cosine calculation in DODS will 
be executed more efficiently since the DSIN and DCOS entry points in DPSC will override the DSIN 
and DCOS entry points in the FORTLIB module, IHCLSCN. 

5.4 Recommended Use of Simultaneous Sine/Cosine Routine 

The DODS formulation contains many situations in which the calculation of both the sine and co- 
sine of a given angle is required. The simultaneous sine/cosine entry points (DPSC and SINCOS) in the 
DPSC module are now available to  DODS programmers who are optimizing DODS modules (such as 
KEPLER) that call for the calculation of both sin (x) and cos (x). The FORTRAN subprogram call, 

CALL DPSC (X, SC) , 

takes about one-half as much time to execute as the separate function calls to  IHCLSCN: 

SC( 1) = DSIN(X) 

SC(2) = DCOS(X) . 

(When DSIN and DCOS entry points are in the DPSC module, the time enhancement is reduced from 
a factor of 2 to  a factor of I .5.) 

5.5 Recommended Use of ALC Entry Points in DPSC 

The ALC entry points in the DPSC module enable an ALC program to execute register-to-register 
sine/cosine functions that bypass the highly indirect FORTRAN convention of passing to  the function 
program the address of the address of the argument in general register 1 .  Besides saving time (the ALC 
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functions are about seven percent faster), the ALC entry points make it possible for some calling pro- 
grams to be written in reentrant code, without using the time-consuming GETMAIN macro. This is 
possible since the ALC functions do not require the storage of an argument list and use only the last 
eight bytes of the save area, which they can share with the calling program. KEPLER is a good exam- 
ple of a second-order reentrant program sharing its save area with the SINCOS routine. 

5.6 Expansion of the DPSC Module 

Because of the frequency of calls to  mathematical functions in DODS (and other production pro- 
grams run on GSFC computers), the authors are developing a series of reentrant modules to  replace 
the most frequently called function subprogram modules in FORTLIB. The following function sub- 
programs, called TRIGPACK, are all either completed or nearing completion: 

DSQRVX) , DTAN(X) , DATAN2(X,Y), 

DSIN(X) , DCOT(X) , DASIN(X) , 

DCOS(X) , DATAN(X) , DACOS(X) . 

The single precision counterparts of these double precision function subprograms are also nearing 
completion. 

Besides the standard FORTRAN entry points, these modules all contain corresponding ALC entry 
points (FORTRAN name with an X suffix-DTANX, for example). The ALC entry points assume that 
the argument is already in floating point register 0. (For the case of the double argument in the 
DATAN2X function, the arguments are assumed to  be in floating point registers 0 and 2.) The ALC 
entry points will permit the development of a large number of reentrant second-order subroutines 
since only the last eight bytes of the save area are used and the storage of an argument list is not 
required as a prelude to  the subroutines execution. 

5.7 Element Conversion Module 

In conjunction with the development of KEPLER and an optimized reentrant TRIGPACK (Sec- 
tion 5.6), the authors are recoding a DODS module called ELCONO, which contains two inverse sub- 
programs: one for converting position and velocity vectors to  osculating Keplerian elements, and the 
other for performing the reverse of this transformation. This third-order module, written in ALC, 
calls on KEPLER and the ALC entry points SINCOS, DSQRTX, DSINX, DATANX, DATAN2X, 
DACOSX, and DTANX in the TRIGPACK modules. I t  also calls on ALC entry points, VCROSSX, 
VDOTX, and XDOTX in a newly developed vector package. KEPLER and the SINCOS entry in 
DPSC are the heart of this newly optimized module. 
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Appendix A* 

5 .  

5 . 1  

5 . 2  

5 . 3  

Definitive Orbit Determination System-Model 1 
(Module Performance and Design) 

MODULE NAME: KEPLR1-SOLUTION OF KEPLER'S EQUATION 

FOR ECCENTRIC ANOMALY. 

LANGUAGE 

FORTRAN IV 

MODULE SIZE 
The source deck of KEPLRl consists of 18 executable FORTRAN 

statements and requires 820 bytes of core storage. 
PURPOSE 

KEPLRl solves Kepler's equation for eccentric anomaly given mean 
anomaly and eccentricity by the Myles Standish algorithm. 

5 . 4  INTERFACE INFORMATION 

5 . 4 . 1  LINKAGE DEFINITION 

Linkage to this module requires the following CALL statement: CALL 

KEPLRl (MA, ECC, ERRC, E2).  See Table 1 for the definition of the 
calling sequence arguments. 

5 . 4 . 2  INTERFACE BLOCK DIAGRAM 

+I KEPLRl 

*Prepared by J. H. Seid, International Business Machines, Inc., under NASA contract NASS-10022, May 1968. The format employed in 
this appendix is defined in GSFC X-544-70-324: Doclrnzentation Standards for the Definitive Orbit Determination System-Per- 
formance and Design Descriptions by R. R. Hohl and Lamar Layton (August 1970). 
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Table 1. Calling Sequence Arguments 

Argument Analytic Limits  
Name Symbol r/O Description Units Format* Min/Max Dimensions 

MA M I Meananomaly Radians L F  - 1 

EC C e I Eccentricity - L F  0 - 1  1 

ERRC 

E2 E 

0 E r r o r  code - LI - 1 

=0, convergence 
<O, no convergence 

0 Eccentric Radians L F  - 
anomaly 

1 

*Format  Key 

L F  - Long F o r m  Floating Point 

LI - Long F o r m  Integer 

5 . 4 . 3  

5 . 4 . 4  

5 . 4 . 5  

INTERFACE BLOCK DIAGRAM NARRATIVE 

None 

CALLED MODULES 

None 

CALLING MODULES 
ELCONO - Elements Conversion Package 

DCCONO - DC Control 
CNVRTO - CONVERT Control 

UNCAL0 - Unknown Calculation 

CONEGO - CONVERT Normal Equations 

NEGENO - DC Normal Equations 

EPTRBO - EPHEM Tape Record Builder 
5 . 5  FUNCTIONAL ANALYSIS 

5 . 5 . 1  MODULE COMPONENT 1: Solve Kepler ' s  equation 

5 . 5 . 1 . 1  Method: 

Given the  mean anomaly, M,  and the eccentricity,  e, the algorithm for 
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computing the eccentric anomaly, E, will be: 
1. 

2. Set E = O  

Set e r r o r  code = 0 
Set l imit  of number of iterations, MAX = 10 

If M =0, go to Step 13 
If M #0, go to Step 3 

3. E o = M + e s i n M  

4. 
5. 
6. E = E o -  F/D 

7 .  

8. 

9. 

10. E o =  E 
11. Return to  Step 4 
12. Set e r r o r  code = 4 
13. Modulo E by 2 q 

14. Return to  calling program 
The l imit  of i terations through Steps 4 t o  11 is 10. Thus MAX = 10.  If 

th i s  number is exceeded, the e r r o r  code is set to  4. 
TOL is the tolerance at which the last significant digit of the difference 
between the previous calculated eccentric anomaly and the present 
calculated anomaly is allowed. TOL allows an e r r o r  of 2 
Source and Type of Inputs: 

The mean anomaly, M,  and the eccentricity, e, will be obtained by this  
module f rom the calling sequence of the CALL statement which t ransfers  
control to  this  function. 

floating-point , 
Destination and Type of Outputs: 
Output of th i s  module will be the eccentric anomaly, E, in long form 
floating-point format ,  Also the e r r o r  code, ERRC, in long integer 

format will be returned to the calling sequence of the CALL statement 
which t ransfers  control to  this function. 

Set number of iterations = 1 
F = E o  - (e sin Eo) - M 
D = 1.0 - [ e cos (Eo - 0.5F) ] 

If 1 Eo - E I - TOL SO,  go to  Step 13; otherwise continue to  Step 8. 

Add 1 t o  number of i terations 
If (number of i terations - MAX) I 0, continue; otherwise go to 
step 12 

5 ~ 1 0 - l ~  

5 , 5 . 1 . 2  

The format of M and e will be long form 

5 . 5 . 1 . 3  
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5 . 5 . 1 . 4  Component Level Flowcharts 

ENTER 

1D 

ECCENTRIC 
ANOMALY = 0 c 0" E= Eo-F/D 

ITER= 
ITER+l 

RETURN SET ERROR 
CODE=4 

18 



5 . 5 . 1 . 5  Component Level F1 ow chart  Description 

1A - Values for mean anomaly, M, and eccentricity, e, are transferred 
to  the module via  the  calling sequence. The eccentric anomaly, E, 
and the e r r o r  code, ERRC , are returned via the calling sequence. 

1B - The counter for  the number of iterations is set to 1. 

1C - Tes t  to  see if mean anomaly is equal to  zero.  
1D - Sets the eccentr ic  anomaly, E, equal to  zero when the mean 

anomaly, M,  is equal t o  ze ro  and returns  to  calling module. 
1 E  - Computes the initial eccentric anomaly, Eo. 
1F - Computes the expression Eo - (e sin Eo) - M using the initial 

1 G  - Computes the expression 1 . 0  - [e cos (Eo - 0.5F)] using the initial 

1H - Computes a m o r e  accurate value for eccentric anomaly, 

computed value of E .  

computed value of Eo and F computed in 1F. 

E = Eo - F/D. 

of the expression IEO-E I - TOL is equal t o  o r  less than zero,  E 

has  been determined. If E has been determined control is returned 
t o  the calling module. 

11 - Test  to  see if  eccentric anomaly has been determined. If the value 

1 J - Increase number of iterations by 1 when eccentric anomaly has  
not been determined. 

1K - Tes t  to  see if number of iterations is less than o r  equal to  the 

5 . 6  

5.7 

5.8 

maximum number of iterations allowed. 
1L - If the number of i terations exceeds the maximum, set e r r o r  code 

equal to  4 .  Return control to calling module. 
1M - If the number of iterations meets the test, make the initial 

eccentric anomaly, Eo, equal t o  the computed eccentric anomaly, 
E, and return to  1 F . 

RESTRICTIONS AND LIMITATIONS 
None 
STORAGE TABLES EXTERNAL TO MODULE 

None 
INPUT/OUTPUT DEVICE REQUIREMENTS 
None 
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5.9 ERROR CONDITIONS AND RECOVERY 

Check to see that number of iterations does not exceed the maximum. 
If so, set e r r o r  code, ERRC = 4. 

. 
5.10 MODULE DESIGN TECHNIQUE 
5.10.1 MODULARITY REQUIREMENT 

None 
5.10.2 EXPANDABILITY REQUIREMENT 

None 
5.10.3 PARAMETERIZATION 

The maximum number of iterations to  determine the eccentric 

anomaly was set equal to 10. 
5.10.4 SPECIAL FEATURES 

None 
5.11 TESTING PROCEDURES AND RESULTS 

5.11.1 UNIT TEST DRIVER DESIGN AND IMPLEMENTATION 
Test  1 - Input data-eccentricity and mean anomaly are read from data 

cards ,  subroutine KEPLRl is executed and the resul ts  are printed. 

Tes t  2 - The eccentricity is varied f rom 0 t o  1 by increments of .05 for 

all values of eccentric anomaly from 0 to  360 degrees ,  incremented by 

15 degrees  in o rde r  to  compute values of mean anomaly. Subroutine 
KEPLRl  is called for all values of mean anomaly and corresponding 

eccentricity, and the results are printed out. 
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5 . 1 1 . 1 . 1  Unit Test Driver Flowchart 

ENTER a 
$JA WRITE HEAD- 

FACTOR FOR 
DEGREES TO 

CONVERT 

TO RADIANS 

CONVERT 

TO DEGREES 

CONVERT 
COMPUTED E 
TO DEGREES 

< RETURN 
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--- 

CONVERT 

TO RADIANS 

COMPUTEMEAN 
ANOMALY, 

M=E-e sin E 

COMPUTE E 

KEPLRl 

CONVERT 
M and BOTH E'S 
TO DEGREES 

4A 
COMPUTE DIF- 
FERENCE IN 

OMALY VALUES 

WRITE M, 
BOTH E'S 
AND DIF- 
FERENCE 

E BY 15 
DEGREES 

INCREMENT 
e BY .05 
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I 

5 . 1 1 . 2  

5 . 1 1 . 3  

5.12 

5 . 1 3  

Program 
Symbol 

E l  

ITER 

MAX 

TOL 

BENCHMARK TESTING 
None 

TEST RESULTS AND ACCURACY 

Th i s  item is not covered at the module level;  it is included in the system 
evaluation document. '' 
GLOSSARY 
A glossary of internal symbols associated with quantities having analytic 
significance is given in Table 2 .  

REFERENCES 
Memorandum f rom I .  Cole to  IBM; 1 August 1967 

Table 2. Internal Symbols 

Analytic 
Symbol Description of T e r m  Units 

Limi ts  
Format  MWMEUC 

Eccentricity anomaly Radians 
Compare value EO 

ITER Number of i terations - 
Completed 

MAX Limit of number of - 
iter at ions 

TOL Tolerance f o r  - 
convergence 

L F  

LI 

LI 

L F  

*Working document in use at GSFC. 
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Appendix B 

Test 1 and Results 

C T E S T  1 
C T E S T  PROGRAM T O  T I M E  TWO K E P L E R  PROGRAMS 
C PROGRAMMER 

R E A L a 8  M i  E t  E A (  3 I t D E  
5 0 0  FORMAT ( 1 ' t // 1 4 9 X  T ' E X E C U T I O N  T I M E S  FOR K E P L E R  A N 0  K E P L R  

W R I T E (  6 ~ 5 0 0 )  
E = . l D - 0 3  
I T I M E  = 2  
C A L L  I N T I M O ( 1 I  

M= -1 D-02 
DO 3 I = l r Z O  

DO 2 J = l i 2 0 0  
DO 1 K = l t 1 0 0  

1 C A L L  K E P L E R ( M i E i 1 R R t E A I  
2 M = M + 6 . 2 0 D - 0 2  
3 E = € +  0490-01 

C A L L  I N T I M O ( I T 1 M E )  

N N E  BOMFORD 

I T / / )  

1 T I  ME = I  T I M E / 4 0 0 0 0 0  
5 0 6  F O R M A T ( / / r 3 0 X , ' A V E R A G E  E X E C U T I O N  T I M E  FOR K E P L E R  ON 3 6 0 / 9 5 ' 1 1 X i I 3 ~  

1 1 X  T ' M I C R O S E C O N D S  ' I 
I T I M E  WR I T E  ( 6 i  50 6 ) 

E=. 10-03 
I T I M E = 2  
C A L L  I N T I  MO( 1 I 
DO 6 I = l - v ? O  
M=. 1 D - 0 2  
00 5 J=li200 
DO 4 K = l ~ 1 0 0  

4 C A L L  K E P L R l ( M t E i I R R t E 2 )  
5 M = M c  6 . 2 8 D - 0 2  
6 €=E+ . 4 9 D - 0  1 

C A L L  I N T I M O ( I T 1 H E I  
I T I M E = I T I M E / 4 0 0 0 0 0  

5 0 7  F O R M A T ( / / T ~ O X T ' A V E R A G E  E X E C U T I O N  T I M E  FOR K E P L R l  ON 3 6 0 / 9 5 ' , 1 X i I 3 i  
1 1 X  7 ' M I C R O S E C O N D S  ' I 

5 0 8  W R I T E ( 6 i 5 0 7 )  I T I M E  
E=. 1 D - 0 3  
I T I M E  =2 
C A L L  I N T I M O (  1) 

M=. 1 D - 0 2  

DO 12 K = l r 1 0 0  
C A L L  

DO 10 1 = 1 t 2 0  

DO 11 J = l T Z O O  

K E P L R l  ( M i €  T I R R  rEZI 
E A (  2 ) = D S I N ( E 2 I  

1 2  E A (  3 1 =DCOS(  E 2  1 
11 M = M + 6 . 2 8 D - 0 2  
IO E=€+ . 4 9 ~ - n i  

C A L L  I N T I M O ( I T 1 M E )  
I T I  ME = I  T I  M E / 4 0 0 0 0 0  

607 F O R M A T ( / / T ~ O X I ' A V E R A G E  E X E C U T I O N  T I M E  FOR K E P L R l  ON 3 6 0 / 9 5 ' r l X i I 3 t  
~ ~ X T ' M I C R O S E C O N D S ( W I T H  S I N C O S I ' I  

W R I T E  ( 6 9 6 0  7 I I T I M E  
R E T U R N  
E N D  

**** ** *- * *********it ******* * *# ********+e* ***** 4 *It*** ** * * * *** *******it * * * *** +* ** 
+**+**+****************+**********+***+****t+*****+*++********++*+*++*~*+***+** 

A V E R A G E  E X E C U T I O N  T I M E  FOR K E P L E R  O N  3 6 0 / 9 5  74 M I C R O S E C O N D S  
( W I T H  S I N C O S I A V E R A G E  E X E C U T I O N  T I M E  F O R  K E P L R l  ON 360/95 314 M I C R O S E C O N D S  

( W I T H O U T  S I N C O S I A V E R A G E  E X E C U T I O N  T I M E  FOR K E P L R l  O N  360/95 266 M I C R O S E C O N D S  
***+*e #C*t****** t******* t***+*  *t+**+$*O*+O*+t**t***+***~+t** +*****+*****+*** ** 
"t***tt***St~~t**********~t+*+* * + * S ~ ~ S * * * * * * X * * * * S S t * * * * * * ~ ~  ******* ******+**** ** * 

E X E C U T I O N  T I M E S  F O R  K E P L E R  A N D  K E P L R l  
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Appendix C 

Test 2 and Results 

C 
C 
C 

8 00 

505 

803  
802 

806 

T E S T  2 
T E S T  PROGRAM T O  T E S T  

R E A L * 8  M t E t E A ( 3 ) t D E  
R E A L * 8  
R E A L * 8  E 2  

A r B  r ERR r MAXERR 

V A L I D I T Y  OF TWO K E P L E R  PROGRAMS 
PROGRAMMER A N N E  BOMFORO 

F O R M A T (  '1' r / /  r 4 9 X  t ' V A L I D I T Y  T E S T  FOR K E P L E R  A N 0  K E P L R l '  / / I  
W R I T E (  6 1 8 Q O )  
DO 501  K = l r 2  

E=. L D - 0 3  
Do 802 I = l t l O o  
M = . l D - 0 2  
DO 803 J = l t l O O O  
I F ( K . E Q . 2 )  GO T O  505 
C A L L  

MAXERR=O.OOOO 

K E P L E R I  M t  € 9  I R R  . E A )  
E R R = D A B S ( E A ( l ) - M - E * E A l Z )  1 
I F ( E R R . L E . M A X E R R )  GO TO 8 0 3  
MAXERR=ERR 
A=M 
B=E 
GO T O  803 
C A L L  K E P L R l ( M t E r I R R r E 2 )  
E A (  1 )  =E2 
E A 1  2 ) = D S I N I E 2 1  
E R R = D A B S ( E A l l  ) - M - E * E A I Z )  1 
I F (  ERR.LE.MAXERR) GO T O  803 
MAXERR=ER R 
A=M 
B=E 
M=M+ . 6 2 8 D - 0 2  
€=E+ . 9 8 0 D - 0 2  
I F ( K . E Q . 2 )  GO T O  808 
F O R M A T (  / / 7 2 O X r  ' M A X I M U M  ERROR F O R  K E P L E R = '  * D l 0 . 3 . '  M = '  9 E10.3,  ' E =  

1 ' t E 1 0 . 3  1 
H R 1 T E 1 6 ~ 8 0 6 )  M A X E R R t A r B  
GO T O  5 0 1  

807 F O R M A T (  / /  1 2 0 x 7  ' M A X I M U M  ERROR F O R  K E P L R l = '  9 D 1 0 . 3  r ' M= ' r E 1 0 . 3 ~ '  E =  

808 W R I T E ( 6 t 8 0 7 )  MAXERRIAIB 
l ' r E 1 0 . 3 )  

501  C O N T I N U E  
R E T U R N  
E N 0  

** *** ********e** * * **** * **** *** ** 8 4 * #* e**** * * * *** I* f * * *** * *** ** 8 * 4 * * *** ** ** * 
w . . . . . . . . . . . . . . . . . . . . . . . .  ***e********* ******** ***********+** ********e** ** f*  

V A L I D I T Y  T E S T  F O R  K E P L E R  AND K E P L R l  
M A X I M U M  ERROR F O R  K E P L E R =  0.4440-15 M= 0 . 5 2 0 0  01 E=  0.951D 00 
M A X I M U M  E R R O R  FOR K E P L R l =  0 . 5 0 0 D - 1 5  M= 0.264D 01  E =  0 . 9 4 1 D  00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f j: *** * * * * * a % * * * * * * * * * *  * * =* *+* **** * * * *** * ***** * * **** ** * * %*** * * ** **** * * * *** ** *** 
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C 
C 
C 
C 
C 
C 
C 

3 

4 

C 
6 
8 
C 

10 

1 2  

Appendix D 

KEPLRI and KEPLER Source Code 

SUBROUTINE K E P L R l ( M A r E C C t E R R C r E 2 )  

T H I S  SUBROUTINE IS U S E D  TO SOLVE K E P L E R ' S  E Q U A T I O N  
FOR E C C E N T R I C  ANOMALY G I V E N  MEAN ANOMALY AND E C C E N T R I C I T Y  

I N  THE C A L L I N G  SEQUENCE MA I S  THE MEAN ANOMALY9 ECC I S  
THE E C C E N T R I C I T Y r  ERRC IS  THE ERROR CODE FOR NUMBER OF 
I T E R A T I O N S  AND ER IS THE ECCENVRIC ANOMALY. 
I N T E G E R  
DOUBLE P R E C I S I O N  M A ~ E C C I E ~ T E ~ ~ F T D T A B S  
R E A L * 8  TOL/.05D-lO/,P12/6.283185307179586/ 

BY THE MYLES S T A N D I S H  ALGORITHM. 

ERRC *MAX 9 I T E R 9  EC 

MAX= 10 
ERRC=O 
E 2 =O 00 D 0 
I F ( M A )  3 t 1 3 t 3  
E l = M A + E C C * D S I N ( M A )  
I TER= 1 
F = E 1 - (  E C C * D S I N (  E l  1 )-MA 

E Z = E l - F / D  
TEST FOR CONVERGENCE 
I F (  D A B S ( E l - E Z ) - T O L )  13 r13 r8  
I T E R = I T E R  + 1 
T E S T  FOR NUMBER OF I T E R A T I O N S  
I F (  I T E R - M A X )  10,10912 

D=l.ODO-(ECC*DCOS(El-O~!jDO*F)) 

E l = E 2  
GO TO 4 
ERRC=4 

13 E 2 = D M O D ( E 2 r P 1 2 )  
I F (  E2.LT.O 1 E 2 = P I 2 + E 2  
RETURN 
END 

KEPLER CSECT 
US1 NG 
STM 
L M  

L D  
L T D R  
B M  
CE 
B L  

ERROR MV I 
B 
MV I 

* STEP ONE 

* t  15 
14 r4 r12 (13 )  
1 r4 r0 (  1) 

2 r 0 ( 2 )  
2 r 2  
ERROR 
2 t = E '  -99' 
*+ 12 
3 ( 3 )  9 1 
E X I T  
3 ( 3 ) ~ 0  

S A V E  R E G I S T E R S  
ARGUMENT ADDRESSES MI E t I E R R t E A  

E 
T E S T  E FOR M I N U S  

T E S T  E FOR S I Z E  
OK I F  L E S S  T H A N  099 * S E T  ERROR CODE =1 * AN0 E X I T  
ZERO ERROR CODE ( N O  ERROR 1 
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* S T E P  TWO 
L D  4r0(  1) M HOLD FOR S I G N  
LPDR 014 M ABSOLUTE 
CD 01 TWOPI  OK I F  L E S S  THAN 2 P I  
B L  *+20 * 
L D R  610 * OTHERWISE 
DD 6 r T W O P I  * REDUCE M 
AH 6 9  Z ERO 14 * TO MODULO 2 P I  
MD 6 t T W O P I  * 
SDR 016 * 
C D  0 * P I  * 
B L  *+12 * I F  X GREATER T H A N  P I  
LCDR 4 t 4  * AND REVERSE S I G N  
LCDR OtO * AND S E T  X = 2 P I - X  
AD 0 r T W O P I  * 
S T E  4 r 5 2 ( 1 3 )  S I G N  OF M SAVED 
STD O t 5 6 ( 1 3 )  M ABSOLUTE BETWEEN 0 AND P I  * STEP THREE-A 
CE O t = E ' l o 5 7 '  * 
B L  *+ lo  * 
LCDR 010 * Q U I C K  AND D I R T Y  S I N ( M )  
AD O t P I  * 
HDR 010 * = ( 3 / 4 ) X  X =  M M BETWEEN O - P I / 2  
HDR 410 * 
ADR 0 9 4  * 
MER 092 E * S I  N( E 1 
AD 0,56(13) EA = M + E * S I N ( M I r  1 S T  E S T I M A T E  
STD O t O ( 4 )  H O L D  AS EA ( P O S I T I V E )  

LA 01 1 S=1 (ASSUMES EA I N  QUAD11 

B L  W A D 1  OK 1 S T  QUADRANT 
L A  0 T 2  OTHERWISE SET S=2 * 
LCDR 010 AND * 
AD 0 T P I  EA= P I - E A  * EA L E S S  THAN P I / 2  

B L  O C T l  OK 1 S T  OCTANT 
LCR O t O  * OTHERWISE SET S - * 
LCDR 010 * AND * 
AE O t = E '  1.5707963' * EA = P I / 2  -EA * EA L E S S  P I / 4  

HDR 470 x /2 
MER 294 -x2/2 
MER 4r2 -x3/4 
ME 4 9 = E '  06666667' - X 3 / 6  
AD 2 1 ONEX 1 - X 2 / 2  = C O S ( E A 1  
ADR 014 X - X 3 / 6  = S I N ( E A )  
L T R  010 T E S T  S FOR + OR - 
B P  *+12 OK 1 S T  OCTANT 
LCR 010 * OTHERWISE SET S = + 1  OR +2 
LDR 4 r 2  * AND 
LDR 210 * EXCHANGE 
LOR 014 * S I N ( E A 1  AND C O S ( E A )  
B C T  01*+6 * -GOS!EAl  - I N  QUAD 1 
LCDR 212 * -COS(EA)  + I N  QUAD 2 

OR X =  P I - M  M BETWEEN PI/2-PI 

* S T E P  THREE-B 

C E  0 * = E '  1.5707963' 

QUAD1 CE O t = E '  07853981' 

O C T l  LCDR 2 r 0  -X 
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ME 0 1 0 ( 2 )  
ME 2,042) 
AD 2 t O N E X  
AD 0 r 5 6 (  13)  
SD O p O ( 4 )  
DER 012 
AD O t O ( 4 )  
S T D  O e O ( 4 )  

L 15*=v(  SINCOS) 
B A L R  14115 
U S I N G  * t14  

* S T E P  FOUR 

* S T E P  F I V E  
I T E R A T E  STD 0 ~ 8 ( 4 )  

* 

* 

* 

* 

* 

* 

* 

rg: 

OUT 

HD 010(2) 
HDR 490 
AD 0156(  13) 
SD 0 90(4) 

LCDR 612 
MD 610( 2 1 
AD 6 t ONEX 

MER 4 t 0  
DER 416 

S T E P  S I X  

S T E P  SEVEN 

E * S I N ( E A )  
-E*COS ( E A )  

l -E*COS( E A )  =D 1ST ORDER 
M + E * S I N ( E A )  
M + E * S I N ( E A )  -EA =F 
F / D  =C 1 S T  ORDER 
EA+C 
STORE A S  EA E S T I M A T E  ( P O S I T I V E )  

S I N ( E A )  
E * S I N ( E A )  

M+E*SIN( E A )  
M + E * S I N ( E A )  -EA =F 

-COS(EA)  
-E*COS ( E  A 
-E*COS(EA) =D 

F * . S * E * S I N ( E A )  

.5 *E*S IN  (EA)  HOLD 

ST ORDER 

F * , S * E * S I N ( E A ) / D  
ADR 6.4 D +F*.5*E*SIN(  E A ) / D  = D 2ND ORDER 

DDR 0 9 6  F / D  = C 2 N D  ORDER 
LDR 410 S A V E  C 

AD O t O ( 4 )  EA+C 
STD O v O ( 4 )  SAVE A S  ENHANCED EA 

LPER 614 C ABSOLUTE 
CE 6 1 = E '  1.E-5' * RETURN FOR F U L L  S I N C O S  AND I T E R A T E  

S T E P  E I G H T  

S T E P  N I N E  

S T E P  TEN 

BCR 2 t 1 5  * IF C GREATER THAN *00001 
S T E P  E L E V E N  

CE 6 ,=E ' 1 0E-8 '  * CONVERGENCE 
B L  OUT * WHERE C L E S S  T H A N  oOOOOOOO1 

STEP TWELVE 
LCDR 014 -C 2ND ORDER SUMS FORMULAE * 
HDR 614 c /2  C BETWEEN 10**-5110**-8 * 
MDR 016 -c*c/ 2 * 
AD 0 ,ONEX 1-c*c/2 = C O S ( C 1  * 
LOR 614 C = S I N ( C )  * 
MDR 6 1 2  S I N  ( C 1 *COS ( E A  1 ;r 
MDR 290 COS ( C  1 *COS( EA 1 * 
MD 418 14) S I N ( C  ) * S I N ( E A )  * 
MD O t 8 t 4 )  COS ( C  1 * S I N (  EA 1 * 
ADR 016  S I N (  EA+C )=SI N( C )*COS( EA)+COS (C ) * S I N  ( E A  1 * 
SDR 294 * 
BR 14  I T E R A T E  * 
LOR 014 C 1 S T  ORDER SUMS FORMULAE * 
MDR 092 W C O S  ( E A  1 C LESS T H A N  lo**-8 * 

COS ( EA+C )=COS ( C  1 *COS ( EA 1-S I N (  C 1 *SI N( EA 1 

STEP T H I R T E E N  
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AD 0 9 8  (4) S I N ( E A + C )  = S I N ( E A 1  +C*COS(EA) 
HD 4 ~ 8 ( 4 )  C*S I N ( E A  1 
SDR 294  COS(EA+C) = C O S ( E A )  - C * S I N ( E A )  

T H  52 ( 13) T 128 CHECK S I G N  OF M 
BZ PLUS OK I F  M P O S I T I V E  

LCDR 010 O T H E R W I S E  COMPLIMENT S I N (  E A )  
L D  4 T T W O P I  * AND 
SD 4 ~ 0 ( 4 )  * S E T  
S T D  4 t0 (4 )  * E A  = Z P I - E A  

* S T E P  FOUR TEEN 

* S T E P  F I F T E E N  

* S T E P  S I X T E E N  
P L U S  STD O r 8 ( 4 )  OUTPUT S I N t E A )  

S T D  2 ~ 1 6 ( 4 )  OUTPUT COS( EA 1 
* S T E P  SEVENTEEN 
EX I T  L M  1 4 ~ 4 ~  12 (13 1 RESTORE REG I STERS 

TWOP I DC D * 6 , 2 8 3 1 8 5 3 0 7 1 7 9 5 8 6 4  * 2 P I  
P I  DC X * 4 l 3 2 4 3 F 6 A 8 8 8 5 A 3 l o  P I  
Z E R O 1 4  DC X * 4 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '  
ONEX DC X ' 4 O F F F F F F F F F F F F F F  ' 

BR 14 AND RETURN 

END z E 9 . 9 9 '  
= E ' l o 5 7 '  
= E  ' 1 5707963 * 
= E o 7 8 5 3 9 8 1  * 
= E  ' e6666667 * 
=V ( S I NC 0 S )  
= E  * 1 .E-5 * 
=E 9 1 E-8 * 

I N T I H O  START 0 
B C  1 5 ~ 1 2  ( 1 5 )  BRANCH AROUND CONSTANTS 
DC x '7 '  E S T A B L I S H  A HALF-WORD BOUNDARY 
DC c ~ 7 9  INTIMO~ NAME 
STM 1 4 r 1 2 9 1 2 (  13) SAVE THE R E G I S T E R S  
BALR 1210 BASE R E G I S T E R  
U S I N G  * r  12 
L R  3~ 1 
L 7 ~ 0 ( 3 )  
C L I  3 ( 7 ) 9 x 9 2 '  CHECK THE I N D I C A T O R  
BC 8 T I N T E R V  BRANCH I F  SECOND ENTRY 

Ln 14,12912( 13 )  RESTORE THE R G G I S T E R S  
M V I  1 2 ( 1 3 ) r X * F F '  I N D I C A T E  CONTROL RETURNEC 
BCR 1 5 ~ 1 4  RETURN TO C A L L I N G  PROGRAM 

T T  I MER 
SR 5 r 0  DETERMINE E L A P S E D  T I M E  
M 4 r T W S I X  CONVERT U N I T S  TO MICRO SECONDS 
ST 5r0(7) STORE T I M E  I N  RETURN L O C A T I O N  
L M  1 4 ~ 1 2 ~  12 (  13) RESTORE REG1 STERS 
M V I  1 2 ( 1 3 ) ~ X * F F *  I N D I C A T E  CONRROL RFTURNED 
BCR 1 5 ~ 1 4  RETURN TO C A L L I N G  PROGRAM 
DS OF 

S T I M E R  T A S K * T U I N T V L = I N T E R  SET THE T I M E R  

I N T E R V  L 5 r  I N T E R  LOAD MAXIMUM T I M E  

I N T E R  DC F * 2147483647 * 
TWSIX  DC F '  2 6  * 
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DPSC CSECT 
U S I N G  *915  
STM 1 4 ~ 2 ~  12 (13 1 
L M  1 9290( 1) 

L A  1 5 9 S I N C O S  
BALR 1 4 ~ 1 5  
S T D  0 ~ 0 ( 2 )  
S T D  2 r 8 ( 2 )  
L M  1 4 ~ 2 9  12(  13)  

L D  oTo( 1)  

BR 14 
ENTRY S I N C O S  
U S I N G  *915 

S I N C O S  LDR 690 
L P D R  010 
C D  0 T TWOP I 
BL *+ 20 
LDR 2 9 0  
DD 2 r T W O P I  
AW 2 r Z E R 0 1 4  
MD ~ T T W O P I  
SDR 0 1 2  
CD O T P  I 
BL *+12 
LCDR 616 
LCDR 010 
AD 0 9  TWOP I 

CD O T P  I O V E R 2  
B L  *+ 14 

LCDR 010 
AD O t P  I 
CD 0 , P I O V E R 4  
B L  *+16 
LCR 090 
LCDR 010 
AD 0 T P I O V E R ~  
AD O T P  I O V E R 4  
LER 2 r 0  

L A  0 T 2  

L A  O T  1 

S A V E  REGS 

X TO F R O  
S I N C O S  ADD 
S I N  TO FRO9 COS TO FRO 
OUTPUT S I N ( X )  
OUTPUT COS ( X 1 
RESTORE REGS 
AND R E T U R N  

X SC ADDRE SSES 

SIGN OF S I N ( A )  
X ABSOLUTE * 

* I F  X GREATER THAN 2 P I  
* REDUCE * TO * MODULO 
* TWOPI * * 

* I F  X GREATER THAN P I  * REVERSE S I G N  OF S I N E  
* AND SET X = 2 P I - X  * 

SET SWITCH = 2 ( C O S  + T  NO S I N / C O S  EXCHANGE)  
8 

* I F  X GREATER THAN P I / 2  * SET X = P I - X  * AND S E T  S W I T C H  =1 (COS - 1  

* I F  X GREATER THAN P 1 / 4  * S E T  X = P I / 4  + P I / 4  -X 
* AND SET S W I T C H  - ( S I N / C O S  EXCHANGE 1 * * 
* 

* 

A U  
S TE 
L 
s LL 
L DR 
H DR 
L DR 
MD 
AD 
HQR 
AD 
H DR 
AD 
HDR 
AD 
HDR 

2r=X'45000000'  4500000X 1 S T  HEX D I G I T  O F  X =INDEX 
2r68(  13) 
1 ~ 6 8 (  13) 4500000 I 
1 T 3  81 =CDNSTANT I N D E X  1 = 0 ~ 1 , 2 9 o o o 9 1 2  
2r0 X TO F R 2  AND FRO 
2'9 2 x*x =x2  
49 2 x2 
4 9 S 5 ( 1 )  

412 

492 
4 r S 2 (  1) 
492  
4951 t 1) 

4 T S 4 f  1) 

4Ts3( 1) 

0 T 4  S I N ( X )  V I A  9 T H  DEGREE ODD P O L Y N O M I A L  
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DCOS 

DCOSX 

D S I N  

DS 1 NX 

L DR 
C E  
BL 
HD 
A D  
MOR 
0 
MD 
A D  
M DR 
AD 
M DR 
AD 
HDR 
AD 
L'TR 
B P  
LCR 
L D R  
L DR 
LOR 
BCT 
LCDR 
L TDR 
BCR 
LCDR 
BR 
U S I N G  
E N  TRY 
L 
L D  

4 r  2 x 2  
4 *=E 25 X 2  V S  1/4 
*+18 8TH DEGREE COS I F  X L E S S  THAN 1 / 2  
2 9(36-64( 1) 
2 r C 5 (  1) l O T H  DEGREE COS I F  X GREATER THAN 1/2 
2 9 4  

*+ 8 
2 r C 5 I 1 1  
2 r C 4 (  1) 
2 r 4  
2rC3( 1) 
2 r 4  
2 t C 2 (  1) 
2 9 4  
2 T C 1 (  1) C O S I X T  V I A  8 OR 10 DEGREE POLYNOMIAL  

O f 0  TEST S W I T C H  FOR S I G N  
*+12 NO EXCHANGE I F  + 

O T O  OTHERWISE SET S W I T C H  +1 OR +2 
4 r2  AN D 
2 T 0  E XCH A NG E 
014 S I N  AND COS 
0 r * + 6  * IF SWITCH = 1 
2 T 2  * S E T  C O S I N E  - 
6 r 6  * IF S I G N  OF S I N  + 
101 14 * E X I T  
0 T O  OTHERWISE S E T  S I G N  - 
14 AND E X I T  

* T  15 
DCOSrDCOSX 
1 T O ( 1 )  
oTo( 1) 
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COSS 

S DR 
CD 
BL 
L C  DR 
S D  
C D  
BL 
L C O R  
A D  
C D  
BNL 
L E R  
A U  
ST E 
L 
S L L  
L DR 
MDR 
L DR 
MD 
A D  
MD R 
AD 
MDR 
AD 
MD R 
A D  
MDR 
L TDR 
BCR 
L C D R  
BR 
LCDR 
AD 
A D  
L E R  
A U  
S T E  
L 
S L L  
M DR 
L D R  
C E  
B L  
MD 
A D  
M DR 
B 
MD 
AD 
M DR 
AD 
M DR 
AD 
M DR 
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AD 
L TDR 
BCR 
LCDR 
BR 
DS 

Z E R Q l 4  DC 
TWOPI DC 
P I  DC 
PIOVER2 DC 
PIOVER4 DC * S I N E  
s1 DC 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

52 DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

s3 DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

5 4  DC 
DC 
DC 
DC 

O T C l (  1) 
6 r 6  
101 14 
0 T O  

14 
OD 
X ~ 4 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~  

X'413243F6A8885A31'  
X '411 921FB54442D18'  
X'40C90FDAA22168C2' 
COEFFICIENTS 
X 40FF F FFF F F FF F FF A ' 
X '4OFFFFFFFFFFFF37' 
X '4OFFF FFF FF FFFD7C ' 
X '4OFFFFFFFFF FE8D8 ' 
X'40FFFFFFFFFFC96A ' 
X 4 40F  F F F F FF F F F 49 B A 
X'4OFFFFFFFFFCFB23' 
X '4OFFFF F FFFFOl C57 ' 
X440FFFFFFFFCC5C90' 
X '4OFFFFFFFF6D8C98' 
X 40 FF F FF F F E 6  3DA 15 
X '40FFFFFFFClE8C81'  
X'40FFFFFFF85A9960' 
X'C02AAAAAAAAA713F' 
X'C02AAAAAAAA931F5' 
X C02 AA AAAAAA8F 027 ' 
X'C02AAAAAAAA2 0215 
X 8 C 02 AAAAAAA9E 685 8 ' 
X'C02AAAAAAABC DDDA ' 
X 'C02AAAAAAA4CBBA7' 
X CO 2AAAAAA947FA52 ' 
X ' CO2AAAAAA7 1 E  4DE 6 
X CO 2AAAAAA2 8 2  6 8  1 3 ' 
X C 02  A A A  AA98025W 8 ' 
X '  C02AAAAA84 FD 178 E ' 
X 'C02AAAAA69F0419B' 
X'3F222221FB15B5CFt 
X '3F22222 212475F04'  
X'3F2222221888AD9A' 
X '3F22 222 2 1  225BEFl '  
X '  3F2222221106E925 '  
X '3F22222203229637 '  
X '3F22222 lD93FF490 '  
X '3F22222 15CBBlC5D' 
X ' 3F22222093 4E 194 1 
X '3F2222 lF3A705D7F' 
X83F22221CBB9904EF ' 
X ' 3 F2 2 22 18F E3 7 3 168  
X '3F2222146F331054 '  
X 'BDCFBE6DAB33F92DS 
X BDD008956D A AE A4B ' 
X 'BDDOOC4ACZC8225A' 
X'BDDOOC15380E D130 

D '6 - 2 8  3 1 8  5 307 1795864  ' 2 P I  
P I  
P I  / 2  

0.0 
Oo6250000000D-01 
0.1250000000D 00 
0.18 75000000D 00 
0 ~ 2 5 0 0 0 0 0 0 0 0 D  00 
0 ~ 3 1 2 5 0 0 0 0 0 0 D  00 
0 ~ 3 7 5 0 0 0 0 0 0 0 D  00 
0 4375000000D 00 
0 ~ 5 0 0 0 0 0 0 0 0 0 D  00 
0 ~ 5 6 2 5 0 0 0 0 0 0 D  00 
0 ~ 6 2 5 0 0 0 0 0 0 0 D  00 
0 ~ 6 8 7 5 0 0 0 0 0 0 D  00 
0 ~ 7 5 0 0 0 0 0 0 0 0 D  00 
0.0 
0 ~ 6 2 5 0 0 0 0 0 0 0 D - 0 1  
0 ~ 1 2 5 0 0 0 0 0 0 0 D  00 
0 ~ 1 8 7 5 O O 0 0 0 0 D  00 
0 ~ 2 5 0 0 0 0 0 0 0 0 D  00 
0 ~ 3 1 2 5 0 0 0 0 0 0 D  00 
0 ~ 3 7 5 0 0 0 0 0 0 0 D  00 
0 ~ 4 3 7 5 0 0 0 0 0 0 D  00 
0 ~ 5 0 0 0 0 0 0 0 0 0 D  00 
0.5625000000D 00 

0.6875000000D 00 
Oo75OOOOOOOOD 00 
0.0 
0 ~ 6 2 5 0 0 0 0 0 0 0 D - 0 1  
0 ~ 1 2 5 0 0 0 0 0 0 0 D  00 
0 18 75000000D 00 
0 ~ 2 5 0 0 0 0 0 0 0 0 D  00 
0 ~ 3 1 2 5 0 0 0 0 0 0 D  00 

0 ~ 6 2 5 0 0 0 0 0 0 0 D  00 

0.3750000000D 00 
Oo4375OOOOOOD 00 
0 ~ 5 0 0 0 0 0 0 0 0 0 D  00 
Oo5625000000D 00 
0.6250000000D 00 
0.6875000000D 00 
0.7500000000D 00 
0.0 
0 ~ 6 2 5 0 0 0 0 0 0 0 D - 0 1  
0 ~ 1 2 5 0 0 0 0 0 0 0 D  00 
0.1875OOOOOOD 00 
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DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

s 5  DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

X BDDOOC4960797744' 
X 8  BDDOOC008 1D853F7 
X BDDOOB3D87649F448 
X'BDD0099428EEBB20 
X BDDO0789E59C8C04' 
X BDD004BB8 BF 34360 
X'BDDO00816BFF2313' 
X 8 BDC FF 844 C6 16A7 1 4 
X a BDC =F 5CC E D9 9F 6 B D 
X8BD27ABC0019B0975 
X 8 3C2 7402 OA16A8780 
X83C2DC3E3A8A96C91' 
X '3C2DE2C5F20265DE 
X 8  3C2E018434E997D5 
X '3C2DF9F7766C5869' 
X 3C2 DE4A5 BC08 1 8 7  1 
X 83C2DC260BE20B1AB8 
X'3C2DA291A6506887 
X '3C2D7F6C 3453E649'  
X 8  3C2D545C68C 1566F 
X 3C2D284AE4CA5DCB8 
X 8  3C2DOOE6F70092D6' * COSINE COEFFICIENTS 

C l  DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

c 2  DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

c 3  DC 
DC 
DC 
DC 
DC 
DC 

X'4110000000000000 '  
X 41 I0000000000880 
X84110000000000010 '  
Xa4OFFFFFFFFFFF6B5' 
X'40FFFFFFFFFF02CC 
X 40FFFFFFFFF9D8BO 
Xa40FFFFFFFFDB4BF3' 
X'40FFFFFFFF66CA3C' 
X 8 40 F F F FF F F F BFB69 4 
X '411 000000002779F 
X'41 1000000000C484 '  
X '40FF FF F FFFF OACD4 
X 8 40 FF F FFF F F 3 2 8 27  8 
X C0800000000008FC 
X C08 0 00000000 1 F 5 6  
X ~C08000000000A56E 
X'CO7FF FFF F FFB4 22 C 
X'C07FFFFFFFC184108 
X'CO7FFFFF FEF2E9A8 
X C07FFFFFFBA0034A' 
X CO7FF FFF F2 4D4282 
X'C07FFFFFFB7C7615' 
X8C080000002240B38 
X 8C0800000006D49C38 
X'CO7FFFFFFFlA5797' 
X 'C 07FFFF FF88 B5A64 
X 8  3FAAAAAAACFAD91B 
X*3FAAAAAAABB4F60A8 
X'3FAAAAAAAC8F2FE5' 
X 3FAAAAAA9BD824DF 
X'3FAAAAAA487F9F9Oa 
X '3FAAAAA985606FCA' 

0 ~ 2 5 0 0 0 0 0 0 0 0 D  00 
0.31 25OOOOOOD 00 
0 ~ 3 7 5 0 0 0 0 0 0 0 D  00 
Oo4375000000D 00 
00 5000000000D 00 
0 ~ 5 6 2 5 0 0 0 0 0 0 D  00 
0 ~ 6 2 5 0 0 0 0 0 0 0 D  00 
0 ~ 6 8 7 5 0 0 0 0 0 0 D  00 
0 ~ 7 5 0 0 0 0 0 0 0 0 D  00 
0.0 
0 ~ 6 2 5 0 0 0 0 0 0 0 D - 0 1  
0 ~ 1 2 5 0 0 0 0 0 0 0 D  00 
0 ~ 1 8 7 5 0 0 0 0 0 0 D  00 
0 ~ 2 5 0 0 0 0 0 0 0 0 D  00 
Oo3125OOOOOOD 00 
0 ~ 3 7 5 0 0 0 0 0 0 0 D  00 
Oo43750000000 00 
0 ~ 5 0 0 0 0 0 0 0 0 0 D  00 
0.5625000000D 00 
0o62500000000  00 
Oo6875000000D 00 
0 ~ 7 5 0 0 0 0 0 0 0 0 D  00 

0.0 
0 62 5 00 0 00 0 OD- 0 1 
0 ~ 1 2 5 0 0 0 0 0 0 0 D  00 
0 0  18 75000000D 00 
0 ~ 2 5 0 0 0 0 0 0 0 0 D  00 
0 ~ 3 1 2 5 0 0 0 0 0 0 D  00 
0 ~ 3 7 5 0 0 0 0 0 0 0 D  00 
0 ~ 4 3 7 5 0 0 0 0 0 0 D  00 
0 ~ 5 0 0 0 0 0 0 0 0 0 D  00 
0o56250000000 00 
0 ~ 6 2 5 0 0 0 0 0 0 0 D  00 
0~68750000000 00 
0.7 500000000D 00 
0.0 
O~625OOOOOOOD-0 1 
0 ~ 1 2 5 0 0 0 0 0 0 0 D  00 
001875OO0000D 00 
0 ~ 2 5 0 0 0 0 0 0 0 0 0  00 
0 3 1  25000000D 00 
0 ~ 3 7 5 0 0 0 0 0 0 0 D  00 
Oo4375000000D 00 
0 ~ 5 0 0 0 0 0 0 0 0 0 D  00 
0 ~ 5 6 2 5 0 0 0 0 0 0 D  00 
0 ~ 6 2 5 0 0 0 0 0 0 0 D  00 
Oo6875000000D 00 
0.7500000000D 00 
0.0 
0 ~ 6 2 5 0 0 0 0 0 0 0 0 - 0 1  
0.1250000000D 00 

0.2500000000D 00 
0 ~ 1 8 7 5 0 0 0 0 0 0 D  00 

0 ~ 3 1 2 5 0 0 0 0 0 0 D  00 
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DC 
DC 
DC 
DC 
DC 
DC 
DC 

c 4  DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

c 5  DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

C6 DC 
DC 
DC 
DC 
DC 
EN D 

X n  3FAAAAA756C2 0236 
X 3FAAAAA2085E052B' 
Xn3FAAAWA8A34ElB3E 
X 3FAAAAAB6650E57Dn 
X'3FAAAAAABBBF8614' 
X ' 3FAAAAAA5544824F 8 

X 3FAAAAA8ElC6081B' 
X 'BE5805E544ACFAED' 
X nBE5B05B3A3D23203 
X ' BE58 05  B 1  3C67OBD8 
X BESBO59AOECC OD46 
X BE58 0563A45C8 E91 a 
X n  BE56051 1 8  16DOF42 
X BE58046D420B0FOBn 
XnBE5B0375D64C08AC8 
X BE58 0 5 3 8 6 ~ 3  50  E39 
XnBE5BOXF9CE1EFA5 
X BE5B05AF4705E015' 
XnBE5B059FF606305B 
X 'BE580576C215745A' 
Xn3D1B83EAOF58760Fn 
X '301 A0381E55BE09On 
Xn3D19FD902FF6AOlAn 
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